On Nonnegative Moore-Penrose Inverses of Perturbed Matrices
نویسندگان
چکیده
We consider the problem of characterizing nonnegativity of the Moore-Penrose inverse for matrix perturbations of the type A − XGY, when the Moore-Penrose inverse of A is nonnegative. Here, we say that a matrix B = (b ij ) is nonnegative and denote it by B ≥ 0 if b ij ≥ 0, ∀i, j. This problemwasmotivated by the results in [1], where the authors consider an M-matrix A and find sufficient conditions for the perturbed matrix (A − XY) to be an M-matrix. Let us recall that a matrix B = (b ij ) is said to Z-matrix if b ij ≤ 0
منابع مشابه
The reverse order law for Moore-Penrose inverses of operators on Hilbert C*-modules
Suppose $T$ and $S$ are Moore-Penrose invertible operators betweenHilbert C*-module. Some necessary and sufficient conditions are given for thereverse order law $(TS)^{ dag} =S^{ dag} T^{ dag}$ to hold.In particular, we show that the equality holds if and only if $Ran(T^{*}TS) subseteq Ran(S)$ and $Ran(SS^{*}T^{*}) subseteq Ran(T^{*}),$ which was studied first by Greville [{it SIAM Rev. 8 (1966...
متن کاملOn Splittings of Matrices and Nonnegative Generalized Inverses
The authors introduce a new type of matrix splitting generalizing the notion of B splitting and study its relationships with nonnegativity of the Moore-Penrose inverse and the group inverse. Mathematics subject classification (2010): 15A09, 15B48.
متن کاملRank Equalities Related to Generalized Inverses of Matrices and Their Applications
This paper is divided into two parts. In the first part, we develop a general method for expressing ranks of matrix expressions that involve Moore-Penrose inverses, group inverses, Drazin inverses, as well as weighted Moore-Penrose inverses of matrices. Through this method we establish a variety of valuable rank equalities related to generalized inverses of matrices mentioned above. Using them,...
متن کاملA Generalization of Moore–penrose Biorthogonal Systems * Masaya Matsuura †
In this paper, the notion of Moore–Penrose biorthogonal systems is generalized. In [Fiedler, Moore–Penrose biorthogonal systems in Euclidean spaces, Lin. Alg. Appl. 362 (2003), pp. 137–143], transformations of generating systems of Euclidean spaces are examined in connection with the Moore-Penrose inverses of their Gram matrices. In this paper, g-inverses are used instead of the Moore–Penrose i...
متن کاملA generalization of Moore-Penrose biorthogonal systems
In this paper, the notion of Moore–Penrose biorthogonal systems is generalized. In [Fiedler, Moore–Penrose biorthogonal systems in Euclidean spaces, Lin. Alg. Appl. 362 (2003), pp. 137–143], transformations of generating systems of Euclidean spaces are examined in connection with the Moore-Penrose inverses of their Gram matrices. In this paper, g-inverses are used instead of the Moore–Penrose i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Applied Mathematics
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013